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MOTIVATION 

Situations for which rank preference data are 
appropriate are numerous. Problems involving N 
judges ranking k objects are common; the analysis 
of ;said problems being handled :in -straight- 

forward fashion via the well -known Friedman 
2 

2 
test. Large values of (or equivalently 

X2 
Kendall's coefficient of concordance W = r 

N(k -1) 
indicate that the group of judges is basically in 
agreement on some consensus rank ordering of the 

objects. If is not significant, we state that 
we have not found enough evidence to indicate 
that the ranks were not assigned randomly, i.e., 

no apparent difference in objects. After a 

significant multiple comparisons [Miller 

(1966)] should be performed to find out which 
objects are judged different. 

If judges can be a priori grouped into subgroups 
according to one or more classification factors, 
a more complete analysis is obtained through the 
use of ANACONDA (Analysis of Concordance) 
[Beckett & Schucany (1975)]. The concept of 
ANACONDA is based on partitioning the total 
agreement into the agreement (or disagreement) 
between and within the subgroups. The agreement 
between two subgroups of judges is measured by 

the statistic which can be expressed as the 
inner product of the two rank sum vector S and T, 

= E ST4, where the elements of 
j =1 

S and T are S = E I 
i 

, j = 1,2,...,k and j 

= j = 1,2,..., k where 
i =1 

represents the rank given the jth object by the 

ith judge in group one (two). The small sample 
distribution has been tabulated [Schucany & 

Frawley (1973)] while the asymptotic distribution 

of is normal for large m, n, and k. The 

linear scaling of 
12 X.- 3mnk(k +l)2 

is 

mn(k -k) 
often useful as a generalized coefficient of 

concordance such that -1 1. Also it has 

shown that Air i£ pij where pij is 

Spearman's p between the ith judge in group one 

and the jth judge in group two, i.e.,yy is the 
average Spearman p between the two groups. Note 

that -1 indicates disagreement between 
groups along with agreement within each group. 
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The underlying principle of cluster analysis is 
quite simple: identify subsets of individuals 
that tend to be relatively similar and group them 
together. There are two major steps common to the 
many methods used to cluster individuals: 1) com- 
puting quantitative indices of multivariate 
similarity between all pairs of individuals and 
2) analyzing similarity matrices to idëhtify 
homogeneous subgroups. Suppose N judges are 
ranking k objects and that we wish to cluster 
these judges on the basis of their prefetettces for 
the objects. We consider the N X N similarity 
matrix 

p12 
p21 1 . 

PNl 1 

is the Spearman rank order correlation between the 

ith and jth judges. It is desirable to maximize 
the within cluster similarity and minimize the 
between cluster similarity. The minimization of 

accomplishes both of these goals simulta- 
neously. 

, where pij 

The clustering procedures proposed herein should' 
be considered as a logical third step in a compre- 
hensive analysis of rank data following the 

Friedman x 
2 
and multiple comparisons (if neces- 

sary). Clusters with interpretable or physical 
meaning might also indicate breakdowns of judges 
into subgroups such that an ANACONDA analysis 
might be illuminating for this data set or sub- 

sequent similar problems. 

Suppose we have 6 judges ranking 3 objects A, B, 
and C in the following fashion. 

A B C 

J1 1 2 3 

J2 3 2 1 

J3 1 2 3 

J4 3 2 1 

J5 1 2 3 

J6 3 2 1 

The obtained value of is 0 indicating no 

agreement. However it apparent the agreement 

of J2, J4, and J6 has been "cancelled" by the 
agreement (on the opposite ordering) of Jl, J3, 

and J5. A conclusion of no agreement is clearly 
not appropriate if, for example, J1, J3, and J5 

are women, while J2, J4, and J6 are men. In such 

a situation the subgroups should be considered 

separately; indeed, the value for the male - 
female breakdown is -1 indicating agreement within 
each subgroup but on opposite orderings. We 



examine the 6 x 6 similarity matrix as previously 
defined: 

-1 1 -1 -1 
J2 -1 1 -1 1 -1 1 

J3 -1 1 -1 1 -1 
J4 -1 1 -1 -1 1 

J5 -1 1 -1 1 

J6 -1 1 -1 -1 

Relabeling the judges 1,3,5,2,4,6 provides the 
clearer rearrangement of the similarity matrix 
below: 

-1 -1 -1 
J3 -1 -1 -1 
J5 1 1 1 -1 -1 -1 

J2 -1 -1 -1 
J4 -1 -1 -1 

J6 -1 -1 -1 

The general idea herein is an extension of the 
above idea--=.a simple rearranging (relabeling) 
of the similarity matrix such that the elements 
in the upper right (lower left equivalently) 
corner of the matrix are small (ideally close to 
-1). The average of the elements in this block 

equals the generalized coefficient of con- 

cordance between two groups of judges. is 

(small) large if there is (dis)agreement between 
groups along with agreement within each group. 
Thus choosing members of clusters to minimize 

will simultaneously maximize within cluster 
similarity and minimize betwen cluster similarity. 

SPECIAL CONSIDERATIONS PARTICULAR TO RANK DATA 

When one of the objects is clearly superior (or 

inferior) to the other k -1 objects, we must be 
wary of the high power of the Friedman test. 
Although it is proper that the Friedman test 
should reject, in considering the situation where 
we have k treatments of which on is a control 
(obviously inferior in e.g., agricultural or 
pharmaceutical studies) which has been added 
merely for reference, perhaps we should question 
our choice of objects if we are seeking a measure 

of agreement. The extreme high power of kin 
this situation (one superior object) has been 
demonstrated by Beckett (1975). For example with 
a group of 6 judges ranking 5 objects with each 
judge recognizing the first object as clearly 

superior, the smallest value of attainable is 

15 which itself is highly significant. Obviously 
clearly superior (or inferior) items are of no 
value in our clustering scheme and in fact their 
presence may mask some important inter- relation- 
ships between other objects and the potential 
subgroups. In such cases these "non- informative" 
objects should be ignored for purposes of clus- 
tering. 

One could perform multiple comparisons (with 

small a) to separate or throw off objects clearly 
superior (or inferior) with significantly large 
or small rank totals. The remaining objects in 
the middle can be considered as the discriminat- 
ing or "critical items ". Regardless of the 
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reduction (if any) of the objects to the critical 
subset, after the clusters are determined, for 
each cluster a cluster average rank profile should 
be presented based on all objects. 

A usual problem in standard cluster analysis 
procedures is that larger problems quickly become 
too big for the computer. Here due to the data 
being in ranks, the data can be reduced to 
(k! + no. of unique tied rank orderings) since 

there are k! possible permutations of the ranks 1 

to k. Disregarding ties, 1000 or more judges 
ranking 5 products can be reduced to at most 
5! 120 rank orderings each with a certain 
multiplicity. 

PROCEDURES 

With a divisive clustering algorithm we seek to 
divide the judges into two sub -groups or clusters. 
A feasible starting point might be to search for 
two pairs of judges who are as diametrically 
opposed as possible as measured by the smallest 

(hopefully -1) obtained and use these pairs as 

the cluster nuclei to which judges will be added. 
Another approach which would be especially useful 
with a large number of judges would be to choose 
as the first cluster nucleus the observed con- 
sensus rank ordering of all N judges and to choose 
as the second cluster nucleus the conjugate rank 
ordering (opposite to the first cluster nucleus). 
Aside from being quicker, the latter approach 
would yield clusters representing the majority 
opinion (1st) and dissenting or minority opinion 
(2nd) as well as make the procedure less dependent 
on the order in which the data are read in. 

After the two cluster nuclei are chosen, judges 
are added to clusters sequentially in such a way 

that minimized at each step. A stopping 

rule could be chosen (such as c, for some 
chosen c 0) or all judges could be forced into 

one of the two clusters. By stopping when 
rises to some negative stopping value we would 
wind up with two clusters plus possibly some 
unclustered judges in the middle - these judges in 
the middle could be considered as making up a 
third cluster. 

An agglomerative approach can be begun essentially 
by hand. The possible rank orderings can be 
grouped into classes. For example with k =4, Class 

1 is chosen, say (1,2,3,4); then Class 2 contains 
those rank orders that can be obtained by one 
permutation of adjacent objects, i.e., {(2,1,3,4), 
(1,3,2,4), (1,2,4,3) }. Class 3 is obtained by two 
permutations of adjacent objects with reference to 
the Class 1 order or by trying one additional per- 
mutation referring to the rank orders in Class 2. 
For 4 objects we will have 7 classes; generally 

there are 
k(2 

-1) + 1 classes. The rank correla- 

tion between Class 1 and any one of rank orderings 

in Class 2 is .8 (generally 1 - 12 the 
k(k -1) 

rank correlation between any two members within 



class 2 is at least .40 (1 ). As long 
n(n -1) 

as we restrict our two clusters from having mem- 
bers from classes above and below the median 

class,1Wwill remain below O. This indicates 

that our cluster algorithm can be further stream - 

lined by immediately adding to the cluster nuclei 

[Class 1 and Class (k(2 -1) + 1)] those judges 

with rank preference orderings belonging to Class 

2 and Class (k(2 -1)), respectively. 

EXAMPLES AND APPLICATIONS 

Example 1 [Hollander & Wolfe, p. 140]. The data 

in Table 1 were obtained by Woodward (1970). 
Woodward, shortstop of the 1970 Cincinnati Reds 
National League baseball team, considered three 
methods of rounding first base. The best method 
is defined to be the one that, on the average, 
minimizes the time to reach second base. 

TABLE 1. Rounding First Base Times 

Players 
Methods 

Round Out Narrow Angle Wide Angle 
1 5.40(1) 5.50(2) 5.55(3) 
2 5.85(3) 5.70(1) 5.75(2) 
3 5.20(1) 5.60(3) 5.50(2) 
4 5.55(3) 5.50(2) 5.40(1) 
5 5.90(3) 5.85(2) 5.70(1) 
6 5.45(1) 5.55(2) 5.60(3) 
7 5.40(2.5) 5.40(2.5) 5.35(1) 
8 5.45(2) 5.50(3) 5.35(1) 
9 5.25(3) 5.15(2) 5.00(1) 

10 5.85(3) 5.80(2) 5.70(1) 
11 5.25(3) 5.20(2) 5.10(1) 
12 5.65(3) 5.55(2) 5.45(1) 
13 5.60(3) 5.35(1) 5.45(2) 
14 5.05(3) 5.00(2) 4.95(1) 
15 5.50(2.5) 5.50(2.5) 5.40(1) 
16 5.45(1) 5.55(3) 5.50(2) 
17 5.55(2.5) 5.55(2.5) 5.35(1) 
18 5.45(1) 5.50(2) 5.55(3) 
19 5.50(3) 5.45(2) 5.25(1) 
20 5.65(3) 5.60(2) 5.40(1) 
21 5.70(3) 5.65(2) 5.55(1) 
22 6.30(2.5) 6.30(2.5) 6.25(1) 

R1 53 R2 =47 R3 32 

The value of (adjusted for ties) is 11.1 which 

is significant at the .005 level. Hence we 
conclude the methods are not all the same with 
respect to speed. Multiple comparison of methods 
indicates Method 3 differs significantly from 
method 1 at the .01 experimentwise error rate. 
"Some" would continue and claim without statis- 
tical justification that method 3 is best. 

Regardless, the assumption of no block -treatment 
interaction (a fundamental assumption which is 
often overlooked) may be of greater concern here- 
Is one method best for all (types of) players? A 
quick perusal of the data shows players 1,6, and 
18 performing opposite to the majority of the 
players. Perhaps method 1 really is best for 
these players due to some physical characteristics 

that they possess. Our cluster analysis provides 
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the following result: Cluster 1: Players 2,4,5, 
7- 15,17,19 -22; Cluster 2: Players 1,3,7,16,18 

with -.665 highly significant and indicative 
of disagreement between the two groups. However, 
this disagreement has been manufactured and is 
meaningful only if the clusters are interpretable. 

Example 2, [Gibbons, p. 353]. In a collaborative 
study of dry milk powders, six different types A 
to F are tested in each of seven different labora- 
tories, and ranked in order of decreasing quality, 
that is, 1 = best, 6 = poorest. The results shown 
below are from Bliss (1967, p. 339). 

TABLE 2. 

Lab A B 

Rank for Powder 

E F C D 
1 2 3 6 1 5 4 

2 2 1 3 4 5 6 

3 1 2 3 5 4 6 

4 2 3 1 5 6 4 

5 4 1.5 1.5 6 3 5 

6 1 3 4 5 2 6 

7 2 4 1 5 6 3 

Here may be used as a check for an outlier 
(hospital 1). Employing hospital 1 as a singleton 

sub -group or cluster we obtain -.1 which is 
not significant. Had it been significant, an 
Investigation of what makes hospital 1 signifi- 
cantly different from the others may have been 
profitable. However, not enough evidence is pres- 
ent to conclude all hospitals should not be con- 
sidered as one group. In this situation Wturns 
out to be a linear multiple of Page's L (1963). 

SUMMARY AND COMMENTS 

The informal procedures outlined herein should be 
useful in many of the problems for which a 
Friedman analysis is appropriate. Specifically, 
ANACONDA may be helpful in identifying agreement 
between and within subgroups of judges. Inter- 
pretable clusters may indicate future breakdowns 
or sub -groupings of judges as well as point out 
potential outliers and violations of the no block - 
treatment interaction assumption. 
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